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Summary

 

• Fine roots are the key link for plant water and nutrient uptake, soil carbon (C)
input and soil microbial activity in forest ecosystems, and play a critical role in
regulating ecosystem C balance and its response to global change.
• Red maple (

 

Acer rubrum

 

) and sugar maple (

 

Acer saccharum

 

) seedlings were
grown for four growing seasons in open-top chambers and exposed to ambient
or elevated carbon dioxide concentration [CO

 

2

 

] in combination with ambient or
elevated temperature. Fine-root production and mortality were monitored using
minirhizotrons, and root biomass was determined from soil cores.
• Both elevated [CO

 

2

 

] and temperature significantly enhanced production and
mortality of fine roots during spring and summer of 1996. At the end of the experi-
ment in September 1997, fine root biomass was significantly lower in elevated tem-
perature chambers, but there were no effects of elevated [CO

 

2

 

] or the interactions
between elevated [CO

 

2

 

] and temperature.
• Deciduous trees have dynamic root systems, and their activity can be enhanced
by CO

 

2

 

 enrichment and climatic warming. Static measures of root response, such as
soil core data, obscure the dynamic nature, which is critical for understanding the
response of forest C cycling to global change.
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Introduction

 

Elevated atmospheric carbon dioxide concentration [CO

 

2

 

]
and rising global mean temperature are expected to influence
ecosystem carbon (C) balance, which feeds back to global
climate change. Given their importance in global C storage
and exchange, forest ecosystems may exert significant impacts
on global C budgets (Schlesinger, 1997). As the key link for
plant water and nutrient uptake, soil C input, and soil microbial
activity in forest ecosystems (Norby, 1994), fine roots play a
critical role in regulating ecosystem C balance and sequestration
of atmospheric CO

 

2

 

 ( Jackson 

 

et al

 

., 1997). In forest trees,
although root biomass accounts for less than 20% of total
biomass, more than 50% of the C acquired annually by plants
can be allocated below ground (George & Marschner, 1996).
Moreover, fine-root productivity and mortality will probably
be sensitive to elevated atmospheric [CO

 

2

 

] and rising

temperature because fine roots have a high turnover rate
(Hendrick & Pregitzer, 1992; Eissenstat 

 

et al

 

., 2000; Gill &
Jackson, 2000).

Elevated [CO

 

2

 

] has been shown to increase (Berntson
& Bazzaz, 1997; Fitter 

 

et al

 

., 1999; Pregitzer 

 

et al

 

., 2000b) or
decrease (Kandeler 

 

et al

 

., 1998) root productivity and biomass.
The inconsistency could partly result from that the effect of
elevated [CO

 

2

 

] on fine roots varies with soil nitrogen (N)
availability (Pregitzer 

 

et al

 

., 2000b) and species (Berntson &
Bazzaz, 1996b). Both root growth and mortality are related to
soil or air temperature (Kasper & Bland, 1992; Forbes 

 

et al

 

.,
1997; McMichael & Burke, 1998; King 

 

et al

 

., 1999; Tierney

 

et al

 

., 2003). Across the globe, turnover rates of fine roots
increase exponentially with mean annual temperature in forests
and grasslands (Gill & Jackson, 2000). However, our under-
standing of the interactive effects of elevated [CO

 

2

 

] and rising
temperature on tree fine roots is limited, partly because of very
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few experiments with both [CO

 

2

 

] and temperature treatments
(Kandeler 

 

et al

 

., 1998).
As part of a comprehensive project on the responses of

maple trees to elevated [CO

 

2

 

] and temperature (Edwards &
Norby, 1998; Norby 

 

et al

 

., 2000, 2003; Norby & Luo, 2004),
this study was conducted to examine the responses of fine
roots in two deciduous tree species, red maple (

 

Acer rubrum

 

)
and sugar maple (

 

Acer saccharum

 

), to elevated [CO

 

2

 

] and air
temperature. The specific objectives were to determine how
elevated [CO

 

2

 

] and temperature affect root production,
mortality, and biomass, root morphology and root tissue quality.

 

Materials and Methods

 

Research site and experimental design

 

Research was conducted in open-top chambers (OTCs) at
the Oak Ridge National Laboratory’s Global Change Field
Research Facility on the National Environmental Research
Park in Oak Ridge, TN, USA (35

 

°

 

54

 

′

 

 N; 84

 

°

 

20

 

′

 

 W). The mean
annual temperature is 14.3

 

°

 

C, mean annual precipitation is
1378 mm and the mean length of growing season is 185 d.
Twelve OTCs were constructed on soils classified as Captina
silt loam (fine-silty, siliceous, mesic Typic Fragiudult) with
moderate-to-medium granular structure and medium internal
drainage. The chambers were 3.0 m in diameter and 2.4 m
high. An additional 1.2-m panel was installed at the beginning
of the third growing season (1996) to accommodate the
height growth of the seedlings. A randomized complete block
design was used with four treatments (the factorial combinations
of two CO

 

2

 

 concentrations with two temperature regimes) in
each of three blocks. The chambers were modified to operate
at either ambient or 4

 

°

 

C above ambient air temperature, in
combination with ambient or elevated (+300 p.p.m.) atmo-
spheric CO

 

2

 

 concentration (Norby 

 

et al

 

., 1997). Fans continu-
ously pushed air through double-walled polyvinyl chloride
chamber panels and out the open chamber tops at 0.6 m

 

3

 

 s

 

−

 

1

 

.
The airstream was conditioned by evaporative coolers (to
maintain ambient temperature) and voltage-regulated electrical
resistance duct heaters. A proportional-integral-differential
feedback control system regulated the cooling and heating
systems to maintain air temperature inside the chambers at
+0.4

 

°

 

C (

 

±

 

 0.3

 

°

 

C) or +4.0

 

°

 

C (

 

± 

 

0.3

 

°

 

C) relative to ambient air
outside the chamber. Soil temperature at 10 cm depth was
increased by 1.2

 

°

 

C by the warmer air in the elevated temper-
ature chambers (Edwards & Norby, 1998). A constant flow of
pure CO

 

2

 

 was introduced into the airstream entering the
chambers; the flow rate was manually adjusted to maintain
a constant differential with ambient air. The temperature
treatments were maintained year-round for 3.5 yr (April 1994
to September 1997), but the CO

 

2

 

 treatments were suspended
during the winter (November–March).

One-year-old red maple (

 

A. rubrum

 

 L.) and sugar maple
(

 

A. saccharum

 

 Marsh.) seedlings were planted directly into the

soil within the chambers in spring 1994. The seedlings were
obtained from a commercial nursery in central Tennessee,
which used a local, open-collected seed source. A few addi-
tional seedlings were planted in spring 1995 to replace those
that did not survive after the first planting, for a total of 10
plants of each species per chamber. The sides and tops of the
OTCs were covered with 73% shade cloth to avoid unnatural
levels of light to these shade tolerant maple seedlings.

 

Production and mortality of fine roots

 

Four minirhizotron tubes, constructed of cellulose acetate
butyrate (Bartz Technology Coporation, Santa Barbara, CA,
USA) and measuring 185 cm long by 5 cm diameter, were
inserted into the ground at the angle of 60

 

°

 

 from vertical in
each chamber in the summer of 1995; installation was completed
by August. Tubes were wrapped above the soil surface with
black foam insulation, and the upper ends were sealed with
rubber stoppers. Video images were collected with a BTC-2
minirhizotron camera with a Smucker handle (Bartz Technology,
Santa Barbara, CA, USA). Individual frames (12.4 

 

×

 

 18.0 mm)
on the videotape were digitized using 

 



 

 software
(Michigan State University, Lansing, MI, USA). The length
and width of each root segment were measured and the
incremental growth, death, or disappearance recorded. Fine
roots were coded into six classifications: new, white, brown,
dead, missing and visible but not measurable due to the poor
quality of the picture.

Physical disturbance of soil and roots by the installation of
minirhizotron tubes could affect the calculation and explana-
tion of the root productivity and mortality (Eissenstat 

 

et al

 

.,
2000). In our experiment, the first and second sets of video
images of roots were not taken until November 1995 and
February 1996, 3 months and 6 months after installation and
during a period when root activity is low. More intensive
observations at about 2- wk intervals were made from May to
July 1996. Thus, there was time for the tree roots to adjust to
the physical disturbance. The data used in this study consist
of measurements collected on individual root segments of
maple trees from 8 November 1995 to 16 July 1996. Sub-
sequent images could not be processed because they were
obscured by moisture and a clay film on the tubes.

Fine root production for a time-period was calculated for
each chamber as the total length of living roots on the date
ending the period minus the total length of those same roots
on the date beginning the period. Fine root mortality for a
time-period was calculated for each chamber as the total length
of roots classified as dead or missing on the date ending a
period, but not classified as dead or missing on the previous
date. The total length of roots in 360 minirhizotron frames
(four tubes with 90 223-mm

 

2

 

 frames each) was expressed as
millimeters of roots per square meter of viewing area.

Total length production and mortality of fine roots were
analysed with a two-way mixed model analysis of data for
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repeated measures design using the Mixed Procedure of the
Statistical Analysis System (SAS Institute, Cary, NC, USA)
software.

 

Biomass, specific root length (SRL), and root 
C and N concentrations

 

At the end of the experiment (September 1997), all the trees
were cut at ground level. Leaves were removed from stems and
leaves and stems were dried and weighed. Above-ground bio-
mass during the first 3 yr of the experiment was estimated
from a regression between stem basal area and dry mass. Above-
ground biomass at the end of the second growing season
(1995), when the minirhizotron measurements began, are
given in Norby 

 

et al

 

. (2000), and final above-ground biomass
is presented in Norby & Luo (2004). After the stems had been
removed from the plots, five soil cores (4.8 cm diameter and
20 cm deep) were collected from each chamber and immedi-
ately placed in ice boxes and taken back to the laboratory
and stored in a freezer. The final analysis was conducted at
Michigan Technological University.

Roots greater than 0.5 mm diameter were hand-picked
from each core before the cores were processed through the root
washer. These roots were added back to the pool of roots re-
covered by the root washer. Fine roots (< 0.5 mm diameter) were
separated with a hydropneumatic root washer (Smucker 

 

et al

 

.,
1982). Each root was then carefully hand washed in deionized
water and sorted according to the following diameter classes:
< 0.5 mm, 0.5–1.0 mm, 1.0–2.0 mm, 2.0–5.0 mm, and
> 5.0 mm. After sorting, each size class was oven-dried (65

 

°

 

C)
for 36 h and weighed. The > 2.0 mm size classes were not well
represented because of the size and the number of cores; there-
fore, they were not included in any statistical analysis.

Specific root length (g m

 

−

 

1

 

) was estimated for fine roots.
Fine roots were hand-excavated from the OTCs. These samples
were collected by species and were kept completely frozen
until analysis. Individually, fine-root samples were unfrozen in
deionized water and 15 root segments were randomly dis-
sected. These 15 fine-root segments were pressed under glass,
video-taped and digitized using the 

 



 

 program for length
measurement (Hendrick & Pregitzer, 1992). Length was
calculated by using the diagonal distance of the grid on which
fine-root segments were placed for videotaping. The 15 fine-
root segments were carefully removed from the glass and oven
dried (65

 

°

 

C) to determine mass.
Nitrogen analyses were performed on two sets of root

samples. First, N concentrations were determined for specific
diameter classes from hand-picked roots to search for any dif-
ferences in concentrations by diameter due to CO

 

2

 

 or temper-
ature treatments. Values were organized as chamber means
(

 

n

 

 = 2) with a treatment level (CO

 

2

 

, temperature) and size
classes. A second analysis was completed to determine N con-
centrations by species. The second analysis was performed on
the fine roots from the hand-excavated samples for the SRL

analysis. All roots were analysed for N concentrations with
a Fison’s CN elemental analyser. Three-way 

 



 

 was
performed using 

 



 

.

 

Results

 

Both CO

 

2

 

 and temperature main effects were statistically
significant on total length production (

 

P <

 

 0.01 and 

 

P

 

 < 0.05,
respectively), mortality (

 

P <

 

 0.001 and 

 

P

 

 < 0.001), and net
production (

 

P <

 

 0.01 and 

 

P

 

 < 0.05) of fine roots during the
period 8 November 1995 to 16 July 1996 (Fig. 1). Overall total
length production of fine roots under elevated [CO

 

2

 

] was 122%
greater than that under ambient [CO

 

2

 

]. Elevated temperature
increased total length production by 265% compared with
ambient temperature. Similar results were found in total length
mortality. Overall total length mortality of fine roots under
elevated [CO

 

2

 

] was 137% higher than those under ambient
CO

 

2

 

. Elevated temperature enhanced total length mortality
by 263% compared with ambient temperature. The effect of
[CO

 

2

 

] on total length production and mortality of fine roots
was larger in elevated temperature, and the effect of temperature
was larger in elevated [CO

 

2

 

], but the CO

 

2

 

 

 

×

 

 temperature
interaction was not statistically significant (

 

P

 

 > 0.05).
Both fine root productivity and mortality generally followed

the seasonal pattern of soil temperature, with much higher
activity in spring and summer (Fig. 2). However, when there
was a summer drought in June and July 1996, root produc-
tivity decreased substantially irrespective of soil temperature,
whereas root mortality under elevated [CO2] and temperature
was much higher than in the other three treatments.

Both fine-root productivity and mortality exhibited expo-
nential (Y = a × ebT) increases with soil temperature (Fig. 3).
Similarly, Steele et al. (1997) also reported an exponential
relationship between fine root production and soil temperature.

Fig. 1 Total length production and mortality (m m−2; mean ± 1 SE) 
of fine roots (< 0.5 m diameter) from November 8 1995 to July 16 
1996. ACAT, ambient [CO2] and ambient temperature; ACET, 
ambient [CO2] and elevated temperature; ECAT, elevated [CO2] 
and ambient temperature; ECET, elevated [CO2] and elevated 
temperature.
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A literature review has shown that root turnover across different
biomes in the world increased exponentially with mean annual
temperature (Gill & Jackson, 2000). Based on the parameter
of b in the exponential functions, we calculated temperature
sensitivity (Q10 = e10b) of fine-root productivity and mortality.

Both CO2 and temperature differentially affected Q10 of
fine-root productivity and mortality. It was found that CO2
treatment had no effect on Q10 of fine-root productivity,
therefore we pooled together the two CO2 concentrations and
only examined the temperature effect. By contrast, temper-
ature treatment did not affect the Q10 of fine-root mortality, so
we pooled together the two temperature levels for each CO2
treatment. Temperature sensitivity of fine-root productivity
decreased from 7.79 under ambient temperature to 4.72
under elevated temperature. Elevated [CO2] increased Q10 of
fine-root mortality from 3.21 to 7.90.

Across the seven sampling periods, fine-root mortality
showed a positive linear correlation (R2 = 0.50, P < 0.05) with
fine-root productivity for the four treatments, which was
consistent with the results of Berntson & Bazzaz (1996),
suggesting proportional changes in fine-root mortality with
productivity (i.e. large root systems have greater root mortality).

By the end of the experiment (September 1997), root bio-
mass under elevated [CO2] was not different from that under
ambient [CO2] across all size classes (P > 0.05). However,
elevated temperature significantly decreased root biomass by

34%, 53% and 43% for size class < 0.5 mm (P < 0.05), 1.0–
2.0 mm (P < 0.05), and < 2.0 mm (total roots, P < 0.05), respec-
tively, but had no effects on size class 0.5–1.0 mm (P > 0.05)
(Fig. 4). There were no interactive effects of CO2 and temper-
ature on root biomass (P > 0.05). Elevated [CO2] compen-
sated for the negative effects of elevated temperature on root
biomass. Overall, the temperature-induced reduction in root
biomass was 27% under elevated [CO2], which is much less
than 60% under ambient [CO2].

Elevated temperature significantly decreased the ratio of
fine-root biomass to aboveground not primary product
(ANPP) by 36% (P < 0.05) and the ratio of fine-root biomass
to leaf biomass by 45% (P < 0.05), marginally reduced the
ratio of fine-root biomass to annual stem increment (29%,
P = 0.0922), and had no significant effect on the ratio of
fine-root biomass to above-ground biomass (P > 0.10)
(Fig. 5). There were no significant effects of CO2 or CO2 ×
temperature interaction on these ratios.

Results of three-way  showed that species (P < 0.05),
CO2 (P < 0.05), and the interactions of CO2 and temperature

Fig. 2 Temporal variability of fine-root productivity (a) and mortality 
(b) during 1996 (mean ± 1 SE). Data are plotted at the end of each 
observation period; the first observation period began on 8 
November of the preceding year. Open circles, ambient [CO2] 
and ambient temperature; closed circles, ambient [CO2] and 
elevated temperature; open squares, elevated [CO2] and ambient 
temperature; closed squares, elevated [CO2] and elevated 
temperature; dashed line, soil temperature.

Fig. 3 Exponential relations of fine-root productivity (Rprod) and 
mortality (Rmort) with soil temperature (T). Each data point was the 
average values for the two levels of temperature or [CO2] treatments 
during each observing period. Open circles, ambient temperature: 
Rprod = 0.0269e0.205T, R2 = 0.6963, P < 0.001. Closed circles, 
elevated temperature: Rprod = 2.8869e0.155T, R2 = 0.525, P < 0.001. 
Open squares, ambient [CO2]: Rmort = 1.154e0.117T, R2 = 0.422, 
P < 0.001. Closed squares, elevated [CO2]: Rmort = 0.346e0.207T, 
R2 = 0.6097, P < 0.001.
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(P < 0.05) had significant effects on specific root length (SRL)
of fine roots, whereas elevated temperature did not affect SRL
(P > 0.05, Fig. 6). On average, SRL of red maple (57.4 m g−1)
was 7.6% lower than that of sugar maple (53.4 m g−1). Elev-
ated [CO2], on average, decreased SRL of fine roots by 9.7%
and 6.4% for red maple and sugar maple, respectively. The
interactions of elevated [CO2] and CO2 × temperature had
significant effects of SRL. Elevated [CO2] reduced SRL of red
maple 16.1% and 3.9% at ambient and elevated temperature,
respectively. Elevated [CO2] reduced SRL of sugar maple by
17.6% at ambient temperature but increased it by 7% at
elevated temperature.

Nitrogen concentration in fine roots (Fig. 7) was approx-
imately 12 g kg−1, except in red maple roots in ambient CO2
and elevated temperature (ACET) which had a significantly

higher concentration (15.6 g kg−1). Hence, the effects of
CO2, temperature, and CO2 × temperature were statistically
significant (P < 0.01, 0.001, and 0.05, respectively), and
that of species was marginally significant (P < 0.10).

Discussion

Effect of elevated [CO2] on fine root production 
and mortality

The magnitude (122%) of the increase in fine-root production
under elevated [CO2] observed in our study was intermediate
within the range (60–240%) reported for other tree species
(Idso & Kimball, 1992; Norby et al., 1995; Zak et al., 1993;
Pregitzer et al., 1995; Rey & Jarvis, 1997; Crookshanks et al.,

Fig. 4 Root biomass (g m−2; mean ± 1 SE) for 
different diameter classes at the end of the 
fourth growing season (1997). ACAT, ambient 
[CO2] and ambient temperature; ACET, 
ambient [CO2] and elevated temperature; 
ECAT, elevated [CO2] and ambient 
temperature; ECET, elevated [CO2] and 
elevated temperature.

Fig. 5 The ratios (mean ± 1 SE) of root 
biomass (< 2.0 mm) to above-ground 
biomass (AGB), net primary production 
(NPP), annual stem increment (ASI), and leaf 
mass. ACAT, ambient [CO2] and ambient 
temperature; ACET, ambient [CO2] and 
elevated temperature; ECAT, elevated [CO2] 
and ambient temperature; ECET, elevated 
[CO2] and elevated temperature.
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1998). The effects of elevated [CO2] on fine-root mortality
have been reported to be more variable than the effects on pro-
ductivity. Increase (Berntson & Bazzaz, 1996; Fitter et al., 1996,
1997), no change (Berntson & Bazzaz, 1996), and decrease
(Day et al., 1996) in root mortality under elevated [CO2]
have been observed. The inconsistency could be attributable
to differences in plant species (Berntson & Bazzaz, 1996), soil
N availability (Pregitzer et al., 1995; King et al., 2002), plant
developmental patterns (Norby et al., 2000) and vegetation
types (Fitter et al., 1996, 1997).

Effect of elevated temperature on fine root production 
and mortality

Our results showed that elevated temperature stimulated
both length production and mortality of fine roots, which was

consistent with those reported in other studies (Hendrick
& Pregitzer, 1993, 1997; Forbes et al., 1997; Fitter et al., 1999;
King et al., 1999; Tierney et al., 2003). Several potential mech-
anisms could explain the increase in fine-root production and
mortality with higher temperature. First, maintenance respira-
tion of plant roots increases exponentially with temperature
( Johnson, 1990; Atkin et al., 2000), resulting in greater root
mortality (Gill & Jackson, 2000). Second, stimulated microbial
activity at higher temperature could lead to increased net N
mineralization and availability (Piatek & Allen, 1999; Zak
et al., 1999; Rustad et al., 2001). The increased net N mineral-
ization and availability can also lead to increased fine-root N
concentration (Pregitzer et al., 1998, 2002; King et al., 2002),
length extension, production and mortality (Pregitzer et al.,
1995; King et al., 1999, 2002; Nadelhoffer, 2000; Pregitzer
et al., 2000a). Third, higher soil temperature could interact

Fig. 6 Specific root length (SRL; mean ± 1 SE) 
of fine roots in Acer rubrum) and Acer 
saccharum. ACAT, ambient [CO2] and ambient 
temperature; ACET, ambient [CO2] and 
elevated temperature; ECAT, elevated [CO2] 
and ambient temperature; ECET, elevated 
[CO2] and elevated temperature.

Fig. 7 Fine-root nitrogen (N) concentration 
(mean ± 1 SE) in Acer rubrum and Acer 
saccharum. ACAT, ambient [CO2] and ambient 
temperature; ACET, ambient [CO2] and 
elevated temperature; ECAT, elevated [CO2] 
and ambient temperature; ECET, elevated 
[CO2] and elevated temperature.
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with the concomitant changes in water availability (Kuhns
et al., 1985; Kramer & Boyer, 1995; Piatek & Allen, 1999).
Fine-root mortality might be accelerated by decreases in soil
moisture (Pregitzer et al., 1993). Finally, pathogen and herbivore
load could also increase in warmer soils, leading to higher root
mortality (Eissenstat & Yanai, 1997).

Fine-root biomass

By the end of experiment (September 1997), elevated [CO2]
had no significant effect (P > 0.05) on fine-root biomass, which
was not consistent with previous studies (Rogers et al., 1994;
Pregitzer et al., 1995; Day et al., 1996; Berntson & Bazzaz,
1997; Curtis & Wang, 1998; Pregitzer et al., 2000b). It may
be that elevated [CO2] increases the rate at which root systems
occupy the soil in a developing stand without increasing root
mass in fully occupied soil. Elevated temperature, on the other
hand, caused significant reductions in root biomass, which is
similar to those found in other studies (Bassow et al., 1994;
Soussana et al., 1996; Forbes et al., 1997; Kandeler et al.,
1998). The response pattern of root biomass observed in this
study was also supported by results of soil respiration (Edwards
& Norby, 1998) and above-ground biomass production
(Norby et al., 2000; Norby & Luo, 2004) (i.e. lower soil respira-
tion and above-ground biomass production under elevated
temperature).

Elevated [CO2] compensated for the negative effects of
increased temperature on above-ground production and
biomass observed in the same experiment (Norby et al., 2000;
Norby & Luo, 2004). In this study, reductions in root
biomass due to elevated temperature were, on average, 27%
under elevated [CO2], and much less than that under ambient
[CO2] (60%, Fig. 4). A similar phenomenon was observed in
Betula populifolia, Betula alleghaniensis, and Acer pensylvani-
cum (Bassow et al., 1994). Elevated [CO2] could (1) reduce
evapotranspiration and increase soil moisture, leading to less
water stress, (2) increase the competitive inhibition of oxygena-
tion such that the relative stimulation of assimilation by elev-
ated [CO2] increases with temperature (Long, 1991), and
(3) increase the temperature optimum for photosynthesis and
release the heat stress at high temperature range (Long, 1991).

Comparison between root production observed 
with minirhizotrons and root biomass measured 
with soil cores

The final harvest data in 1997 appear to conflict with the with
the minirhizotron observations in 1996, which showed net
productivity increasing more in elevated [CO2] and elevated
temperature chambers than in ambient [CO2] and temperature.
After accounting for the initial root length in November
1995, the standing crop of root length was higher in elevated
[CO2] and elevated temperature in July 1996, whereas the
1997 harvest data indicated no effect of [CO2] and a significant

negative impact of temperature on root mass. A possibility is
that the indirect estimate from minirhizotrons was measuring
a different population of roots or otherwise in error. To compare
the data sets, we estimated root mass in grams per square
meter from the minirhizotron data by assuming a soil volume
based on a depth of viewing field of 2 mm and dividing root
length by SRL. Although there are a number of tenuous assump-
tions in this approach, the overall estimate of root biomass in
July 1996 of 36 g m−2 was similar to the soil core data for
roots < 1 mm diameter. Hence, we should assume the data
sets are comparable and look for biological or environmental
explanations for the apparent discrepancy in response to
[CO2] and temperature increases. There are several possible
explanations.

First, summer droughts are probably responsible for the
reductions of root biomass under elevated temperature.
Meteorological data showed that there were summer drought
periods in 1995 (1 July−30 July and 9 August−12 September),
1996 (13 June−12 July), and 1997 (21 August−22 September).
Total precipitation during these periods (14.1, 25.8, 17.1 and
20.7 mm) were 89, 75, 86 and 78% lower than the long-term
(50 yr) averages (133.0, 103.1, 124.7 and 92.6 mm) during the
same periods, whereas average air temperatures (26.8, 26.9,
25.6 and 23.3°C) were 1.7, 3.0, 1.5 and 0.5°C higher than
the long-term averages (25.1, 23.9, 24.1 and 22.8°C).

During these drought periods, heat and water stress could
have interacted to negatively affect plant photosynthesis
(C. Gunderson, unpubl. data) and growth, leading to reduced
above- and below-ground biomass (Hendrick & Pregitzer,
1993; Norby et al., 2000; Norby & Luo, 2004). As shown in
Fig. 2, there was no difference in root productivity among the
four treatments during the period 1–16 July (the later part of
the drought period in 1996), whereas the root mortality under
elevated [CO2] and temperature was still higher. The drought-
induced differential responses of root productivity and mor-
tality in middle and late summer could offset the enhanced
net production (production minus mortality) during the ear-
lier period of the growing season, leading to the reduced root
biomass at the end of the experiment. The interannual vari-
ability in the above-ground biomass production supported
this argument. In 1994, when there was no obvious drought
period, elevated temperature increased above-ground biomass
production. However, the above-ground biomass production
observed in 1995, 1996 and 1997 was lower under elevated
temperature than under ambient temperature.

Second, fine-root productivity and mortality in temperate
forests is highly seasonal (Pregitzer et al., 2000a). Fine-root
production is usually greater than mortality earlier in the
growing season, whereas fine-root mortality is usually greater
than productivity later in the growing season. The minirhizo-
tron data in this study are available only for the first half of the
growing season and provide a partial picture of root produc-
tion and mortality dynamics. Elevated [CO2] and temper-
ature stimulated root production more than mortality in the
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first half of the growing season, but their relative effects on
production and mortality might have reversed later in the
growing season (as was the case with respect to elevated
temperature at the last observation period in July), resulting in
a loss of earlier gains in fine root standing crop. Although the
minirhizotron data provide an incomplete picture, they do
clearly show that the fine root population in this system is
dynamic and responsive to elevated [CO2] and temperature,
whereas the static measure of response provided by the soil
core data provide no indication of the dynamics.

Finally, elevated temperature has been found to stimulate
soil N mineralization and availability (Rustad et al., 2001;
Melillo et al., 2002). Increased soil N availability has been
associated with reduced fine-root biomass but increased fine-
root production (i.e. higher root turnover rate) (Nadelhoffer,
2000).

Our understanding of the interactive effects of elevated
[CO2] and temperature on tree roots is limited, largely
because there are only a few experiments with both [CO2] and
temperature treatments (King et al., 1996, 1997; Soussana
et al., 1996; Kandeler et al., 1998). Our results did not show
any CO2 and temperature interactive effects on fine-root pro-
ductivity, mortality, and biomass even though the main effects
of elevated [CO2] and elevated temperature on fine-root pro-
ductivity and mortality were significant, which was consistent
with those of BassiriRad et al. (1993). In coniferous trees,
King et al., 1997 found that the interaction of elevated [CO2]
and temperature significantly increased fine-root biomass of
Pinus taeda, but had no effect on that of P. ponderosa.

Below-ground to above-ground biomass ratio

It is proposed that elevated [CO2] initially increases C assimi-
lation, with a greater proportion allocated to the roots to
maintain a balance of resources, resulting in increased root-to-
shoot and root-to-whole-plant mass ratios (Norby et al., 1986,
1995; Rogers et al., 1994). For example, Norby et al. (1987)
and Rattray et al. (1995) reported that the proportion of 14C
translocated below-ground increased in elevated [CO2] com-
pared with ambient [CO2]. However, results from many other
studies did not show any clear evidence that elevated [CO2]
substantially changed the proportion of C allocated to root
mass in tree species (Taylor et al., 1994; Wullschleger et al., 1995;
Berntson & Bazzaz, 1996; Curtis & Wang, 1998; Tingey et al.,
2000). We could not make any conclusion whether elevated
[CO2] affected the below-ground C allocation based only on
the data of the ratio of below-ground to above-ground biomass.

Our results showed significant decreases in the ratios of root
biomass to above-ground biomass or net primary productivity
under elevated temperature. Gunn & Farrar (1999) also found
decreased dry mass of roots relative to shoot in Dactylis glom-
erata under high temperature. The underlying mechanisms
for the reduced root : shoot ratios are not clear and need further
research.

Specific root length

Results from this study showed that elevated [CO2] caused
significant reductions in SRL of fine roots (0.5 mm) in maple
trees grown in open-top chambers. Similarly, two short-term
studies on P. taeda (Larigauderie et al., 1994; King et al., 1997)
showed that SRL of secondary roots decreased in elevated
[CO2]. Crookshanks et al. (1998) also reported a transitory
reduction in SRL of fine roots in Pinus sylvestris exposed to
elevated [CO2] after 3 months, but no effect after 6 months.
However, increase (Larigauderie et al., 1994) and no changes
(Berntson & Bazzaz, 1997; King et al., 1997; Janssens et al.,
1998; Pregitzer et al. 2000b) in SRL of fine roots were also
reported under elevated [CO2]. Changes in SRL could affect the
efficiency of water and nutrient uptake, root longevity, and
root respiration rate in plants (Reich et al., 1998; Eissenstat
et al., 2000; Gill & Jackson, 2000).

Root N concentration

Reduced fine-root N concentration under elevated [CO2]
observed in our study and previous studies (Berntson & Bazzaz,
1997; Cotrufo et al., 1998; Pregitzer et al., 2000b) were largely
attributable to the stimulated plant growth and biomass
accumulation. The magnitude of reduced N concentration in
fine roots under elevated [CO2] is typically 10–25% (Rogers
et al., 1999). Our results that elevated temperature increased
root N concentration were consistent with that of Kandeler
et al. (1998). Higher root N concentration could have resulted
from enhanced N diffusion in the soil and plant N uptake
due to greater N mineralization and availability under high
temperatures (BassiriRad et al., 1993; BassiriRad, 2000; Rustad
et al., 2001). Higher N concentration could lead to greater
fine-root mortality (Pregitzer et al., 1998, 2002; King et al.,
2002) and alteration of soil N cycling such as microbial N
immobilization (Zak et al., 2000).

Conclusions

Both elevated [CO2] and temperature increased fine-root
productivity and mortality in two maple tree species with a
dynamic fine-root population. Stimulation of fine-root pro-
duction and mortality under global change conditions provides
a mechanism for increased flux of C to soil and possible
sequestration in soil organic matter pools (Matamala et al.,
2003). Soil cores indicated that elevated temperature caused
significant reductions in fine-root biomass, whereas elevated
[CO2] had no effect. The soil core data, which provide no
information about the dynamic nature of the root system, are
not necessarily inconsistent with the minirhizotron data from
the previous year. The effect of droughts, the probable increase
in root mortality late in the growing season, and temperature-
induced changes in soil N status could have contributed to the
different responses of fine-root productivity and root biomass.
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Insufficient data are available on the interactive effects of
elevated [CO2] and temperature on fine-root productivity
and mortality, biomass, and morphology to seek general
response patterns.
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